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Chapter 13

Survival Analysis

Extensive survival analysis facilities written by Terry Therneau (Mayo Founda-
tion) are available inS-PLUS and in theR packagesurvival .

Survival analysis is concerned with the distribution of lifetimes, often of hu-
mans but also of components and machines. There are two distinct levels of
mathematical treatment in the literature. Collett (1994), Cox and Oakes (1984),
Hosmer and Lemeshow (1999), Kalbfleisch and Prentice (1980) and Klein and
Moeschberger (1997) take a traditional and mathematically non-rigorous ap-
proach. The modern mathematical approach based on continuous-parameter mar-
tingales is given by Fleming and Harrington (1991) and Andersenet al. (1993).
(The latter is needed here only to justify some of the distribution theory and for
the concept of martingale residuals.) Other aspects closely related to Therneau’s
software are described in Therneau and Grambsch (2000).

Let T denote a lifetime random variable. It will take values in(0,∞), and
its continuous distribution may be specified by a cumulative distribution function
F with a densityf . (Mixed distributions can be considered, but many of the
formulae used by the software need modification.) For lifetimes it is more usual
to work with thesurvivor function S(t) = 1 − F (t) = P (T > t), thehazard
function h(t) = lim∆t→0 P (t � T < t + ∆t | T � t)/∆t and thecumulative
hazard function H(t) =

∫ t

0
h(s) ds. These are all related; we have

h(t) =
f(t)

S(t)
, H(t) = − logS(t)

Common parametric distributions for lifetimes are (Kalbfleisch and Prentice,
1980) the exponential, withS(t) = exp−λt and hazardλ, the Weibull with

S(t) = exp−(λt)α, h(t) = λα(λt)α−1

the log-normal, the gamma and the log-logistic which has

S(t) =
1

1 + (λt)τ
, h(t) =

λτ(λt)τ−1

1 + (λt)τ

The major distinguishing feature of survival analysis iscensoring. An indi-
vidual case may not be observed on the whole of its lifetime, so that, for example,
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354 Survival Analysis

we may only know that it survived to the end of the trial. More general patterns
of censoring are possible, but all lead to data for each case of the form either of a
precise lifetime or the information that the lifetime fell in some interval (possibly
extending to infinity).

Clearly we must place some restrictionson the censoring mechanism, for if
cases were removed from the trial just before death we would be misled. Consider
right censoring, in which the case leaves the trial at timeCi, and we know either
Ti if Ti � Ci or that Ti > Ci. Random censoring assumes thatTi and Ci

are independent random variables, and therefore in a strong sense that censoring
is uninformative. This includes the special case oftype I censoring, in which
the censoring time is fixed in advance, as well as trials in which the patients
enter at random times but the trial is reviewed at a fixed time. It excludestype
II censoring in which the trial is concluded after a fixed number of failures. Most
analyses (including all those based solely on likelihoods) are valid under a weaker
assumption that Kalbfleisch and Prentice (1980,§5.2) callindependent censoring
in which the hazard at timet conditional on the whole history of the process
only depends on the survival of that individual to timet. (Independent censoring
does cover type II censoring.) Conventionally the time recorded ismin(Ti, Ci)
together with the indicator variable for observed deathδi = I(Ti � Ci). Then
under independent right censoring the likelihood for parameters in the lifetime
distribution is

L =
∏

δi=1

f(ti)
∏

δi=0

S(ti) =
∏

δi=1

h(ti)S(ti)
∏

δi=0

S(ti) =

n∏

i=1

h(ti)
δiS(ti)

(13.1)
Usually we are not primarily interested in the lifetime distributionper se, but

how it varies between groups (usually calledstrata in the survival context) or on
measurements on the cases, calledcovariates. In the more complicated problems
the hazard will depend on covariates that vary with time, such as blood pressure
or changes of treatments.

The functionSurv(times, status) is used to describe the censored sur-
vival data to theS functions, and always appears on the left side of a model for-
mula. In the simplest case of right censoring the variables aremin(Ti, Ci) and
δi (logical or 0/1 or 1/2). Further forms allow left and interval censoring. The
results of printing the object returned bySurv are the vector of the information
available, either the lifetime or an interval.

We consider three small running examples. Uncensored data on survival times
for leukaemia (Feigl and Zelen, 1965; Cox and Oakes, 1984, p. 9) are in data
frame leuk. This has two covariates, the white blood countwbc, and ag a test
result that returns ‘present’ or ‘absent’. Two-sample data (Gehan, 1965; Cox
and Oakes, 1984, p. 7) on remission times for leukaemia are given in data frame
gehan. This trial has 42 individuals in matched pairs, and no covariates (other
than the treatment group).1 Data framemotors contains the results of an accel-
erated life test experiment with 10 replicates at each of four temperatures reported

1Andersenet al. (1993, p. 22) indicate that this trial had a sequential stopping rule that invalidates
most of the methods used here; it should be seen as illustrative only.
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by Nelson and Hahn (1972) and Kalbfleisch and Prentice (1980, pp. 4–5). The
times are given in hours, but all but one is a multiple of 12, and only 14 values
occur

17 21 22 56 60 70 73.5 115.5 143.5 147.5833 157.5 202.5 216.5 227
in days, which suggests that observation was not continuous. Thus this is a good
example to test the handling of ties.

13.1 Estimators of Survivor Curves

The estimate of the survivor curve for uncensored data is easy; just take one minus
the empirical distribution function. For the leukaemia data we have

plot(survfit(Surv(time) ~ ag, data=leuk), lty = 2:3, col = 2:3)

legend(80, 0.8, c("ag absent", "ag present"), lty = 2:3, col = 2:3)

and confidence intervals are obtained easily from the binomial distribution of
Ŝ(t). For example, the estimated variance is

Ŝ(t)[1− Ŝ(t)]/n = r(t)[n− r(t)]/n3 (13.2)

when r(t) is the number of cases still alive (and hence ‘at risk’) at timet.
This computation introduces the functionsurvfit and its associatedplot,

print and summary methods. It takes a model formula, and if there are factors
on the right-hand side, splits the data on those factors, and plots a survivor curve
for each factor combination, here just presence or absence ofag. (Although the
factors can be specified additively, the computation effectively uses their interac-
tion.)

For censored data we have to allow for the decline in the number of cases at
risk over time. Letr(t) be the number of cases at risk just before timet, that
is, those that are in the trial and not yet dead. If we consider a set of intervals
Ii = [ti, ti+1) covering [0,∞), we can estimate the probabilitypi of surviving
interval Ii as [r(ti)− di]/r(ti) wheredi is the number of deaths in intervalIi.
Then the probability of surviving untilti is

P (T > ti) = S(ti) ≈
i−1∏

0

pj ≈
i−1∏

0

r(ti)− di
r(ti)

Now let us refine the grid of intervals. Non-unity terms in the product will
only appear for intervals in which deaths occur, so the limit becomes

Ŝ(t) =
∏ r(ti)− di

r(ti)

the product being over times at which deaths occur beforet (but they could occur
simultaneously). This is the Kaplan–Meier estimator. Note that this becomes
constant after the largest observedti, and for this reason the estimate is only
plotted up to the largestti. However, the points at the right-hand end of the plot
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will be very variable, and it may be better to stop plotting when there are still a
few individuals at risk.

We can apply similar reasoning to the cumulative hazard

H(ti) ≈
∑

j�i

h(tj)(tj+1 − tj) ≈
∑

j�i

dj
r(tj)

with limit

Ĥ(t) =
∑ dj

r(tj)
(13.3)

again over times at which deaths occur beforet. This is the Nelson estimator of
the cumulative hazard, and leads to the Altshuler or Fleming–Harrington estima-
tor of the survivor curve

S̃(t) = exp−Ĥ(t) (13.4)

The two estimators are related by the approximationexp−x ≈ 1 − x for small
x, so they will be nearly equal for large risk sets. TheS functions follow Fleming
and Harrington in breaking ties in (13.3), so if there were 3 deaths when the risk
set contained 12 people,3/12 is replaced by1/12 + 1/11 + 1/10.

Similar arguments to those used to derive the two estimators lead to the stan-
dard error formula for the Kaplan–Meier estimator

var
(
Ŝ(t)

)
= Ŝ(t)2

∑ dj
r(tj)[r(tj)− dj ]

(13.5)

often called Greenwood’s formula after its version for life tables, and

var
(
Ĥ(t)

)
=

∑ dj
r(tj)[r(tj)− dj ]

(13.6)

We leave it to the reader to check that Greenwood’s formula reduces to (13.2)
in the absence of ties and censoring. Note that if censoring can occur, both the
Kaplan–Meier and Nelson estimators are biased; the bias results from the inability
to give a sensible estimate when the risk set is empty.

Tsiatis (1981) suggested the denominatorr(tj)
2 rather thanr(tj)[r(tj) −

dj ] on asymptotic grounds. Both Fleming and Harrington (1991) and Andersen
et al. (1993) give a rigorous derivation of these formulae (and corrected versions
for mixed distributions), as well as calculations of bias and limit theorems that
justify asymptotic normality. Klein (1991)discussed the bias and small-sample
behaviour of the variance estimators; his conclusions forĤ(t) are that the bias
is negligible and the Tsiatis form of the standard error is accurate (for practical
use) provided the expected size of the risk set att is at least five. For the Kaplan–
Meier estimator Greenwood’s formula is preferred, and is accurate enough (but
biased downwards) again provided the expected size of the risk set is at least five.

We can use these formulae to indicate confidence intervals based on asymp-
totic normality, but we must decide on what scale to compute them. By default the
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function survfit computes confidence intervals on the log survivor (or cumula-
tive hazard) scale, but linear and complementary log-log scales are also available
(via the conf.type argument). These choices give

Ŝ(t) exp
[
±kα s.e.(Ĥ(t))

]

Ŝ(t)
[
1± kα s.e.(Ĥ(t))

]

exp
{
−Ĥ(t) exp

[
±kα

s.e.(Ĥ(t))

Ĥ(t)

]}

the last having the advantage of taking values in(0, 1). Bie, Borgan and Liestøl
(1987) and Borgan and Liestøl (1990) considered these and an arc-sine trans-
formation; their results indicate that the complementary log-log interval is quite
satisfactory for sample sizes as small as 25.

We do not distinguish clearly between log-survivor curves and cumulative
hazards, which differ only by sign, yet the natural estimator of the first is the
Kaplan–Meier estimator on log scale, and for the second it is the Nelson estima-
tor. This is particularly true for confidence intervals, which we would expect to
transform just by a change of sign. Fortunately, practical differences only emerge
for very small risk sets, and are then swamped by the very large variability of the
estimators.

The function survfit also handles censored data, and uses the Kaplan–
Meier estimator by default. We try it on thegehan data:

> attach(gehan)

> Surv(time, cens)

[1] 1 10 22 7 3 32+ 12 23 8 22 17 6 2 16

[15] 11 34+ 8 32+ 12 25+ 2 11+ 5 20+ 4 19+ 15 6

[29] 8 17+ 23 35+ 5 6 11 13 4 9+ 1 6+ 8 10+

> plot(log(time) ~ pair)

> gehan.surv <- survfit(Surv(time, cens) ~ treat, data = gehan,

conf.type = "log-log")

> summary(gehan.surv)

....

> plot(gehan.surv, conf.int = T, lty = 3:2, log = T,

xlab = "time of remission (weeks)", ylab = "survival")

> lines(gehan.surv, lty = 3:2, lwd = 2, cex = 2)

> legend(25, 0.1 , c("control", "6-MP"), lty = 2:3, lwd = 2)

which calculates and plots (as shown in Figure 13.1) the product-limit es-
timators for the two groups, giving standard errors calculated using Green-
wood’s formula. (Confidence intervals are plotted automatically if there is only
one group.) Other options are available, includingerror = "tsiatis" and
type = "fleming-harrington" (which can be abbreviated to the first char-
acter). Note that theplot method has alog argument that plotŝS(t) on log
scale, effectively showing the negative cumulative hazard.
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Figure 13.1: Survivor curves (on log scale) for the two groups of thegehan data. The
crosses (on the 6-MP curve) represent censoring times. The thicker lines are the estimates,
the thinner lines pointwise 95% confidence intervals.

Testing survivor curves

We can test for differences between the groups in thegehan example by

> survdiff(Surv(time, cens) ~ treat, data = gehan)

N Observed Expected (O-E)^2/E (O-E)^2/V

treat=6-MP 21 9 19.3 5.46 16.8

treat=control 21 21 10.7 9.77 16.8

Chisq= 16.8 on 1 degrees of freedom, p= 4.17e-05

This is one of a family of tests with parameterρ defined by Fleming and Harring-
ton (1981) and Harrington and Fleming (1982). The defaultρ = 0 corresponds
to thelog-rank test. Supposetj are the observed death times. If we condition on
the risk set and the number of deathsDj at time tj , the mean of the number of
deathsDjk in groupk is clearlyEjk = Dkrk(tj)/r(tj) under the null hypothe-
sis (whererk(tj) is the number from groupk at risk at timej ). The statistic used
is (Ok −Ek) =

∑
j Ŝ(tj−)ρ

[
Djk −Ejk

]
,2 and from this we compute a statistic

(O − E)TV −1(O − E) with an approximately chi-squared distribution. There
are a number of different approximations to the variance matrixV , the one used
being the weighted sum over deathtimes of the variance matrices ofDjk − Ejk

computed from the hypergeometric distribution. The sum of(Ok − Ek)
2/Ek

provides a conservative approximation to the chi-squared statistic. The final col-
umn is (O − E)2 divided by the diagonal ofV ; the final line gives the overall
statistic computed from the full quadratic form.

2 Ŝ(t−) is the Kaplan–Meier estimate of survival just prior tot, ignoring the grouping.
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The valuerho = 1 corresponds approximately to the Peto–Peto modifica-
tion (Peto and Peto, 1972) of the Wilcoxon test, and is more sensitive to early
differences in the survivor curves.

A warning: tests of differences between groups are often used inappropriately.
The gehan dataset has no other covariates, but where there are covariates the
differences between the groups may reflect or be masked by differences in the
covariates. Thus for theleuk dataset

> survdiff(Surv(time) ~ ag, data = leuk)

N Observed Expected (O-E)^2/E (O-E)^2/V

ag=absent 16 16 9.3 4.83 8.45

ag=present 17 17 23.7 1.90 8.45

Chisq= 8.4 on 1 degrees of freedom, p= 0.00365

is inappropriate as there are differences in distribution ofwbc between the two
groups. A model is needed to adjust for the covariates (see page 368).

13.2 Parametric Models

Parametric models for survival data have fallen out of fashion with the advent
of less parametric approaches such as the Cox proportional hazard models con-
sidered in the next section, but they remain a very useful tool, particularly in
exploratory work (as usually they can be fitted very much faster than the Cox
models).

The simplest parametric model is theexponential distribution with hazard
λi > 0. The natural way to relate this to a covariate vectorx for the case (in-
cluding a constant if required) and to satisfy the positivity constraint is to take

logλi = βTxi, λi = eβ
Txi

For the Weibull distribution the hazard function is

h(t) = λααtα−1 = αtα−1 exp(αβTx) (13.7)

if we again makeλ an exponential function of the covariates, and so we have the
first appearance of theproportional hazards model

h(t) = h0(t) expβ
Tx (13.8)

which we consider again later. This identification suggests re-parametrizing the
Weibull by replacingλα by λ, but as this just rescales the coefficients we can
move easily from one parametrization to the other.

The Weibull is also a member of the class ofaccelerated life models, which
have survival timeT such thatT expβTx has a fixed distribution; that is, time
is speeded up by the factorexpβTx for an individual with covariatex. This
corresponds to replacingt in the survivor function and hazard byt expβTx,
and for models such as the exponential, Weibull and log-logistic with parametric
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Figure 13.2: A log-log plot of cumulative hazard for thegehan dataset.

dependence onλt, this corresponds to takingλ = expβTx. For all accelerated-
life models we will have

logT = logT0 − βTx (13.9)

for a random variableT0 whose distribution does not depend onx, so these are
naturally considered as regression models.

For the Weibull the cumulative hazard is linear on a log-log plot, which pro-
vides a useful diagnostic aid. For example, for thegehan data

> plot(gehan.surv, lty = 3:4, col = 2:3, fun = "cloglog",

xlab = "time of remission (weeks)", ylab = "log H(t)")

> legend(2, 0.5, c("control","6-MP"), lty = 4:3, col = 3:2)

we see excellent agreement with the proportional hazards hypothesis and with a
Weibull baseline (Figure 13.2).

The functionsurvReg3 fits parametric survival models of the form

�(T ) ∼ βTx+ σ ε (13.10)

where �( ) is usually a log transformation. Thedist argument specifies
the distribution of ε and �( ), and σ is known as thescale. The distribu-
tion can be weibull (the default) exponential, rayleigh, lognormal

or loglogistic, all with a log transformation, orextreme, logistic,
gaussian or t with an identity transformation.

The default fordistribution corresponds to the model

logT ∼ βTx+ σ logE

for a standard exponentialE whereas our Weibull parametrization corresponds
to

logT ∼ − logλ+
1

α
logE

3 survreg in R.
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Thus survReg uses a log-linear Weibull model for− logλ and the scale factor
σ estimates1/α. Theexponential distribution comes from fixingσ = α = 1.

We consider exponential analyses, followed by Weibull and log-logistic re-
gression analyses.

> options(contrasts = c("contr.treatment", "contr.poly"))

> survReg(Surv(time) ~ ag*log(wbc), data = leuk,

dist = "exponential")

....

Coefficients:

(Intercept) ag log(wbc) ag:log(wbc)

4.3433 4.135 -0.15402 -0.32781

Scale fixed at 1

Loglik(model)= -145.7 Loglik(intercept only)= -155.5

Chisq= 19.58 on 3 degrees of freedom, p= 0.00021

> summary(survReg(Surv(time) ~ ag + log(wbc), data = leuk,

dist = "exponential"))

Value Std. Error z p

(Intercept) 5.815 1.263 4.60 4.15e-06

ag 1.018 0.364 2.80 5.14e-03

log(wbc) -0.304 0.124 -2.45 1.44e-02

> summary(survReg(Surv(time) ~ ag + log(wbc), data = leuk))

# Weibull is the default

....

Value Std. Error z p

(Intercept) 5.8524 1.323 4.425 9.66e-06

ag 1.0206 0.378 2.699 6.95e-03

log(wbc) -0.3103 0.131 -2.363 1.81e-02

Log(scale) 0.0399 0.139 0.287 7.74e-01

Scale= 1.04

Weibull distribution

Loglik(model)= -146.5 Loglik(intercept only)= -153.6

Chisq= 14.18 on 2 degrees of freedom, p= 0.00084

....

> summary(survReg(Surv(time) ~ ag + log(wbc), data = leuk,

dist = "loglogistic"))

Value Std. Error z p

(Intercept) 8.027 1.701 4.72 2.37e-06

ag 1.155 0.431 2.68 7.30e-03

log(wbc) -0.609 0.176 -3.47 5.21e-04

Log(scale) -0.374 0.145 -2.58 9.74e-03

Scale= 0.688

Log logistic distribution
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Loglik(model)= -146.6 Loglik(intercept only)= -155.4

Chisq= 17.58 on 2 degrees of freedom, p= 0.00015

The Weibull analysis shows no support for non-exponential shape. For later refer-
ence, in the proportional hazards parametrization (13.8) the estimate of the coef-
ficients is β̂ = −(5.85, 1.02,−0.310)T/1.04 = (−5.63,−0.981, 0.298)T. The
log-logistic distribution, which is anaccelerated life model but not a proportional
hazards model (in our parametrization), gives a considerably more significant co-
efficient for log(wbc). Its usual scale parameterτ (as defined on page 353) is
estimated as1/0.688 ≈ 1.45.

We can test for a difference in groups within the Weibull model by the Wald
test (the ‘z’ value forag ) or we can perform a likelihood ratio test by theanova
method.

> anova(survReg(Surv(time) ~ log(wbc), data = leuk),

survReg(Surv(time) ~ ag + log(wbc), data = leuk))

....

Terms Resid. Df -2*LL Test Df Deviance Pr(Chi)

1 log(wbc) 30 299.35

2 ag + log(wbc) 29 293.00 +ag 1 6.3572 0.01169

The likelihood ratio test statistic is somewhat less significant than the result given
by survdiff.

An extension is to allow different scale parametersσ for each group, by
adding astrata argument to the formula. For example,

> summary(survReg(Surv(time) ~ strata(ag) + log(wbc), data=leuk))

....

Value Std. Error z p

(Intercept) 7.499 1.475 5.085 3.68e-07

log(wbc) -0.422 0.149 -2.834 4.59e-03

ag=absent 0.152 0.221 0.688 4.92e-01

ag=present 0.142 0.216 0.658 5.11e-01

Scale:

ag=absent ag=present

1.16 1.15

Weibull distribution

Loglik(model)= -149.7 Loglik(intercept only)= -153.2

....

If the accelerated-life model holds,T exp(−βTx) has the same distribution
for all subjects, being standard Weibull, log-logistic and so on. Thus we can
get some insight into what the common distribution should be by studying the
distribution of (Ti exp(−β̂Txi)). Another way to look at this is that the residuals
from the regression arelogTi − β̂Txi which we have transformed back to the
scale of time. For theleuk data we could use, for example,

leuk.wei <- survReg(Surv(time) ~ ag + log(wbc), data = leuk)

ntimes <- leuk$time * exp(-leuk.wei$linear.predictors)

plot(survfit(Surv(ntimes)), log = T)
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Figure 13.3: A log plot of S(t) (equivalently, a linear plot of−H(t) ) for the leuk

dataset with pointwise confidence intervals.

The result (Figure 13.3) is plausiblylinear, confirming the suitability of an expo-
nential model. If we wished to test for a general Weibull distribution, we should
plot log(− log Ŝ(t)) against log t. (This is provided by thefun="cloglog"
argument toplot.survfit)

Moving on to thegehan dataset, which includes right censoring, we find

> survReg(Surv(time, cens) ~ factor(pair) + treat, data = gehan,

dist = "exponential")

....

Loglik(model)= -101.6 Loglik(intercept only)= -116.8

Chisq= 30.27 on 21 degrees of freedom, p= 0.087

> summary(survReg(Surv(time, cens) ~ treat, data = gehan,

dist = "exponential"))

Value Std. Error z p

(Intercept) 3.69 0.333 11.06 2.00e-28

treat -1.53 0.398 -3.83 1.27e-04

Scale fixed at 1

Exponential distribution

Loglik(model)= -108.5 Loglik(intercept only)= -116.8

Chisq= 16.49 on 1 degrees of freedom, p= 4.9e-05

> summary(survReg(Surv(time, cens) ~ treat, data = gehan))

Value Std. Error z p

(Intercept) 3.516 0.252 13.96 2.61e-44

treat -1.267 0.311 -4.08 4.51e-05

Log(scale) -0.312 0.147 -2.12 3.43e-02

Scale= 0.732

Weibull distribution

Loglik(model)= -106.6 Loglik(intercept only)= -116.4

Chisq= 19.65 on 1 degrees of freedom, p= 9.3e-06
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There is no evidence of close matchingof pairs. The difference in log hazard
between treatments is−(−1.267)/0.732 = 1.73 with a standard error of0.42 =
0.311/0.732.

Finally, we consider themotors data, which are analysed by Kalbfleisch and
Prentice (1980,§3.8.1). According to Nelson and Hahn (1972), the data were
collected to assess survival at130◦C, for which they found a median of 34 400
hours and a 10 percentile of 17 300 hours.

> plot(survfit(Surv(time, cens) ~ factor(temp), data = motors),

conf.int = F)

> motor.wei <- survReg(Surv(time, cens) ~ temp, data = motors)

> summary(motor.wei)

Value Std. Error z p

(Intercept) 16.3185 0.62296 26.2 3.03e-151

temp -0.0453 0.00319 -14.2 6.74e-46

Log(scale) -1.0956 0.21480 -5.1 3.38e-07

Scale= 0.334

Weibull distribution

Loglik(model)= -147.4 Loglik(intercept only)= -169.5

Chisq= 44.32 on 1 degrees of freedom, p= 2.8e-11

....

> unlist(predict(motor.wei, data.frame(temp=130), se.fit = T))

fit se.fit

33813 7506.3

The predict method by default predicts the centre of the distribution. We can
obtain predictions for quantiles by

> predict(motor.wei, data.frame(temp=130), type = "quantile",

p = c(0.5, 0.1))

[1] 29914 15935

We can also usepredict to find standard errors, but we prefer to compute con-
fidence intervals on log-time scale by

> t1 <- predict(motor.wei, data.frame(temp=130),

type = "uquantile", p = 0.5, se = T)

> exp(c(LL=t1$fit - 2*t1$se, UL=t1$fit + 2*t1$se))

LL UL

19517 45849

> t1 <- predict(motor.wei, data.frame(temp=130),

type = "uquantile", p = 0.1, se = T)

> exp(c(LL=t1$fit - 2*t1$se, UL=t1$fit + 2*t1$se))

LL UL

10258 24752

Nelson & Hahn worked withz = 1000/(temp+273.2). We leave the reader
to try this; it gives slightly larger quantiles.
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Function censorReg

S-PLUS has a functioncensorReg for parametric survival analysis by BillS+

Meeker; this has a very substantial overlap withsurvReg but is more general
in that it allowstruncation as well ascensoring. Either or both of censoring and
truncation occur when subjects are only observed for part of the time axis. An
observationTi is right-censored if it is known only thatTi > Ui for a censor-
ing time Ui, and left-censored if it is known only thatTi � Li. (Both left- and
right-censoring can occur in a study, but not for the same individual.) Interval
censoring is usually taken to refer to subjects known to have an event in(Li, Ui],
but with the time of the event otherwise unknown. Truncation is similar but subtly
different. For left and right truncation, subjects with events beforeLi or afterUi

are not included in the study, and interval truncation refers to both left and right
truncation. (Notice the inconsistency with interval censoring.)

Confusingly, censorReg uses"logexponential" and "lograyleigh"

for what are known tosurvReg as the"exponential" and "rayleigh" dis-
tributions and are accelerated-life models for those distributions.

Let us consider a simple example usinggehan. We can fit a Weibull model
by

> options(contrasts = c("contr.treatment", "contr.poly"))

> summary(censorReg(censor(time, cens) ~ treat, data = gehan))

....

Coefficients:

Est. Std.Err. 95% LCL 95% UCL z-value p-value

3.52 0.252 3.02 4.009 13.96 2.61e-44

-1.27 0.311 -1.88 -0.658 -4.08 4.51e-05

Extreme value distribution: Dispersion (scale) = 0.73219

Observations: 42 Total; 12 Censored

-2*Log-Likelihood: 213

which agrees with our results on page 363.
The potential advantages ofcensorReg come from its wider range of op-

tions. As noted previously, it allows truncation, by specifying a call tocensor

with a truncation argument. Distributions can be fitted with athreshold, that
is, a parameterγ > 0 such that the failure-time model is fitted toT − γ (and
hence no failures can occur before timeγ ).

There is aplot method forcensorReg that produces up to seven figures.
A strata argument in acensorReg model has a completely different

meaning: it fits separate models at each level of the stratifying factor, unlike
survReg which has common regression coefficients across strata.

13.3 Cox Proportional Hazards Model

Cox (1972) introduced a less parametric approach to proportional hazards. There
is a baseline hazard functionh0(t) that is modified multiplicatively by covariates
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(including group indicators), so the hazard function for any individual case is

h(t) = h0(t) expβ
Tx

and the interest is mainly in the proportional factors rather than the baseline haz-
ard. Note that the cumulative hazards will also be proportional, so we can examine
the hypothesis by plotting survivor curves for sub-groups on log scale. Later we
allow the covariates to depend on time.

The parameter vectorβ is estimated by maximizing apartial likelihood. Sup-
pose one death occurred at timetj . Then conditional on this event the probability
that casei died is

h0(t) expβ
Txi∑

l I(Tl � t)h0(t) expβTxl
=

expβTxi∑
l I(Tl � t) expβTxl

(13.11)

which does not depend on the baseline hazard. The partial likelihood forβ is
the product of such terms over all observed deaths, and usually contains most of
the information aboutβ (the remainder being in the observed times of death).
However, we need a further condition on the censoring (Fleming and Harrington,
1991, pp. 138–9) that it is independent anduninformative for this to be so; the
latter means that the likelihood for censored observations in[t, t+∆t) does not
depend onβ.

The correct treatment of ties causes conceptual difficulties as they are an event
of probability zero for continuous distributions. Formally (13.11) may be cor-
rected to include all possible combinations of deaths. As this increases the com-
putational load, it is common to employ the Breslow approximation4 in which
each death is always considered to precede all other events at that time. Let
τi = I(Ti � t) expβTxi, and suppose there ared deaths out ofm possible
events at timet. Breslow’s approximation uses the term

d∏

i=1

τi∑m
1 τj

in the partial likelihood at timet. Other options are Efron’s approximation

d∏

i=1

τi∑m
1 τj − i

d

∑d
1 τj

and the ‘exact’ partial likelihood

d∏

i=1

τi

/ ∑ d∏

k=1

τjk

where the sum is over subsets of1, . . . ,m of size d. One of these terms is
selected by themethod argument of the functioncoxph, with defaultefron.

4First proposed by Peto (1972).
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The baseline cumulative hazardH0(t) is estimated by rescaling the con-
tributions to the number at risk byexp β̂Tx in (13.3). Thus in that formula
r(t) =

∑
I(Ti � t) exp β̂Txi.

The Cox model is easily extended to allow different baseline hazard functions
for different groups, and this is automatically done if they are declared asstrata.
For our leukaemia example we have:

> leuk.cox <- coxph(Surv(time) ~ ag + log(wbc), data = leuk)

> summary(leuk.cox)

....

coef exp(coef) se(coef) z p

ag -1.069 0.343 0.429 -2.49 0.0130

log(wbc) 0.368 1.444 0.136 2.70 0.0069

exp(coef) exp(-coef) lower .95 upper .95

ag 0.343 2.913 0.148 0.796

log(wbc) 1.444 0.692 1.106 1.886

Rsquare= 0.377 (max possible= 0.994 )

Likelihood ratio test= 15.6 on 2 df, p=0.000401

Wald test = 15.1 on 2 df, p=0.000537

Score (logrank) test = 16.5 on 2 df, p=0.000263

> update(leuk.cox, ~ . -ag)

....

Likelihood ratio test=9.19 on 1 df, p=0.00243 n= 33

> (leuk.coxs <- coxph(Surv(time) ~ strata(ag) + log(wbc),

data = leuk))

....

coef exp(coef) se(coef) z p

log(wbc) 0.391 1.48 0.143 2.74 0.0062

....

Likelihood ratio test=7.78 on 1 df, p=0.00529 n= 33

> (leuk.coxs1 <- update(leuk.coxs, . ~ . + ag:log(wbc)))

....

coef exp(coef) se(coef) z p

log(wbc) 0.183 1.20 0.188 0.978 0.33

ag:log(wbc) 0.456 1.58 0.285 1.598 0.11

....

> plot(survfit(Surv(time) ~ ag), lty = 2:3, log = T)

> lines(survfit(leuk.coxs), lty = 2:3, lwd = 3)

> legend(80, 0.8, c("ag absent", "ag present"), lty = 2:3)

The ‘likelihood ratio test’ is actually based on (log) partial likelihoods, not the full
likelihood, but has similar asymptotic properties. The tests show that there is a
significant effect ofwbc on survival, but also that there is a significant difference
between the twoag groups (although as Figure 13.4 shows, this is less than
before adjustment for the effect ofwbc).
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Figure 13.4: Log-survivor curves for theleuk dataset. The thick lines are from a Cox
model with two strata, the thin lines Kaplan–Meier estimates that ignore the blood counts.

Note howsurvfit can take the result of a fit of a proportional hazard model.
In the first fit the hazards in the two groups differ only by a factor whereas later
they are allowed to have separate baseline hazards (which look very close to pro-
portional). There is marginal evidence for a difference in slope within the two
strata. Note how straight the log-survivor functions are in Figure 13.4, confirming
the good fit of the exponential model for these data. The Kaplan–Meier survivor
curves refer to the populations; those from thecoxph fit refer to a patient in the
stratum with an averagelog(wbc) for the whole dataset. This example shows
why it is inappropriate just to test (usingsurvdiff ) the difference between the
two groups; part of the difference is attributable to the lowerwbc in the ag absent
group.

The test statistics refer to the whole set of covariates. The likelihood ratio test
statistic is the change in deviance on fitting the covariates over just the baseline
hazard (by strata); the score test is the expansion at the baseline, and so does
not need the parameters to be estimated (although this has been done). TheR2

measure quoted bysummary.coxph is taken from Nagelkerke (1991).
The general proportional hazards model gives estimated (non-intercept) co-

efficients β̂ = (−1.07, 0.37)T , compared to the Weibull fit of(−0.98, 0.30)T
(on page 362). The log-logistic had coefficients(−1.16, 0.61)T which un-
der the approximations of Solomon (1984) would be scaled byτ/2 to give
(−0.79, 0.42)T for a Cox proportional-hazards fit if the log-logistic regression
model (an accelerated-life model) were the true model.

We next consider the Gehan data. We saw before that the pairing has a neg-
ligible effect for the exponential model. Here the effect is a little larger, with
P ≈ 8%. The Gehan data have a large number of (mainly pairwise) ties, so we
use the ‘exact’ partial likelihood.

> coxph(Surv(time, cens) ~ treat, data = gehan, method = "exact")

coef exp(coef) se(coef) z p

treat 1.63 5.09 0.433 3.76 0.00017
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Likelihood ratio test=16.2 on 1 df, p=5.54e-05 n= 42

# The next fit is slow

> coxph(Surv(time, cens) ~ treat + factor(pair), data = gehan,

method = "exact")

....

Likelihood ratio test=45.5 on 21 df, p=0.00148 n= 42

....

> 1 - pchisq(45.5 - 16.2, 20)

[1] 0.082018

Finally we consider themotors data. The exact fit is much the slowest, as it
has large groups of ties.

> (motor.cox <- coxph(Surv(time, cens) ~ temp, motors))

....

coef exp(coef) se(coef) z p

temp 0.0918 1.1 0.0274 3.36 0.00079

....

> coxph(Surv(time, cens) ~ temp, motors, method = "breslow")

....

coef exp(coef) se(coef) z p

temp 0.0905 1.09 0.0274 3.3 0.00098

....

> coxph(Surv(time, cens) ~ temp, motors, method = "exact")

....

coef exp(coef) se(coef) z p

temp 0.0947 1.1 0.0274 3.45 0.00056

....

> plot( survfit(motor.cox, newdata = data.frame(temp=200),

conf.type = "log-log") )

> summary( survfit(motor.cox, newdata = data.frame(temp=130)) )

time n.risk n.event survival std.err lower 95% CI upper 95% CI

408 40 4 1.000 0.000254 0.999 1

504 36 3 1.000 0.000499 0.999 1

1344 28 2 0.999 0.001910 0.995 1

1440 26 1 0.998 0.002698 0.993 1

1764 20 1 0.996 0.005327 0.986 1

2772 19 1 0.994 0.007922 0.978 1

3444 18 1 0.991 0.010676 0.971 1

3542 17 1 0.988 0.013670 0.962 1

3780 16 1 0.985 0.016980 0.952 1

4860 15 1 0.981 0.020697 0.941 1

5196 14 1 0.977 0.024947 0.929 1

The functionsurvfit has a special method forcoxph objects that plots the
mean and confidence interval of the survivor curve for an average individual (with
average values of the covariates). As we see, this can be overridden by giving new
data, as shown in Figure 13.5. The non-parametric method is unable to extrapolate
to 130◦C as none of the test examples survived long enough to estimate the
baseline hazard beyond the last failure at 5 196 hours.
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Figure 13.5: The survivor curve for a motor at200◦C estimated from a Cox proportional
hazards model (solid line) with pointwise 95%confidence intervals (dotted lines).

Residuals

The concept of a residual is a difficult one for binary data, especially as here the
event may not be observed because of censoring. A straightforward possibility is
to take

ri = δi − Ĥ(ti)

which is known as themartingale residual after a derivation from the mathemat-
ical theory given by Fleming and Harrington (1991,§4.5). They show that it is
appropriate for checking the functional form of the proportional hazards model,
for if

h(t) = h0(t)φ(x
∗) expβTx

for an (unknown) function of a covariatex∗ then

E[R | X∗] ≈ [φ(X∗)− φ]
∑

δi/n

and this can be estimated by smoothing a plot of the martingale residuals ver-
susx∗, for example, usinglowess or the functionscatter.smooth based on
loess. (The termφ is a complexly weighted mean.) The covariatex∗ can be
one not included in the model, or one of the terms to check for non-linear effects.

The martingale residuals are the default output ofresiduals on a coxph

fit.
The martingale residuals can have a very skewed distribution, as their maxi-

mum value is 1, but they can be arbitrarily negative. Thedeviance residuals are a
transformation

sign(ri)
√

2[−ri − δi log(δi − ri)]
which reduces the skewness, and for a parametric survival model when squared
and summed give (approximately) the deviance. Deviance residuals are best used
in plots that will indicate cases not fitted well by the model.
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The Schoenfeld residuals (Schoenfeld, 1982) are defined at death times as
xi−x(ti) wherex(s) is the mean weighted byexp β̂Tx of the x over only the
cases still in the risk set at times. These residuals form a matrix with one row
for each case that died and a column foreach covariate. The scaled Schoenfeld
residuals (type = "scaledsch" ) are theI−1 matrix multiplying the Schoen-
feld residuals, whereI is the (partial) information matrix at the fitted parameters
in the Cox model.

Thescore residuals are the terms of efficient score for the partial likelihood,
this being a sum over cases of

Li =
[
xi − x(ti)

]
δi −

∫ ti

0

[
xi(s)− x(s)

]
ĥ(s) ds

Thus the score residuals form ann × p matrix. They can be used to ex-
amine leverage of individual cases by computing (approximately) the change
in β̂ if the observation were dropped;type = "dfbeta" gives this, whereas
type = "dfbetas" scales by the standard errors for the components ofβ̂.

Tests of proportionality of hazards

Once a type of departure from the base model is discovered or suspected, the
proportional hazards formulation is usually flexible enough to allow an extended
model to be formulated and the significance of the departure tested within the
extended model. Nevertheless, some approximations can be useful, and are pro-
vided by the functioncox.zph for departures of the type

β(t) = β + θg(t)

for some postulated smooth functiong. Grambsch and Therneau (1994) show
that the scaled Schoenfeld residuals for casei have, approximately, meang(ti)θ
and a computable variance matrix.

The function cox.zph has bothprint and plot methods. The printed
output gives an estimate of the correlation betweeng(ti) and the scaled Schoen-
feld residuals and a chi-squared test ofθ = 0 for each covariate, and an overall
chi-squared test. The plot method gives a plot for each covariate, of the scaled
Schoenfeld residuals againstg(t) with a spline smooth and pointwise confidence
bands for the smooth. (Figure 13.8 on page 375 is an example.)

The functiong has to be specified. The default incox.zph is 1 − Ŝ(t) for
the Kaplan–Meier estimator, with options for the ranks of the death times,g ≡ 1
and g = log as well as a user-specified function. (Thex-axis of the plots is
labelled by the death times, not

{
g(ti)

}
.)

13.4 Further Examples

VA lung cancer data

S-PLUS supplies5 the datasetcancer.vet on a Veterans Administration lung
cancer trial used by Kalbfleisch and Prentice (1980), but as it has no on-line help,

5For R it is supplied in packageMASS .
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it is not obvious what it is! It is a matrix of 137 cases with right-censored survival
time and the covariates

treatment standard or test
celltype one of four cell types
Karnofsky score of performance on scale 0–100, with high values for relatively

well patients
diagnosis time since diagnosis in months at entry to trial
age in years
therapy logical for prior therapy

As there are several covariates, we use the Cox model to establish baseline haz-
ards.

> # R: data(VA) # is all that is required.

> # S: VA.temp <- as.data.frame(cancer.vet)

> # S: dimnames(VA.temp)[[2]] <- c("treat", "cell", "stime",

"status", "Karn", "diag.time","age","therapy")

> # S: attach(VA.temp)

> # S: VA <- data.frame(stime, status, treat = factor(treat), age,

Karn, diag.time, cell = factor(cell), prior = factor(therapy))

> # S: detach(VA.temp)

> (VA.cox <- coxph(Surv(stime, status) ~ treat + age + Karn +

diag.time + cell + prior, data = VA))

coef exp(coef) se(coef) z p

treat 2.95e-01 1.343 0.20755 1.41945 1.6e-01

age -8.71e-03 0.991 0.00930 -0.93612 3.5e-01

Karn -3.28e-02 0.968 0.00551 -5.95801 2.6e-09

diag.time 8.18e-05 1.000 0.00914 0.00895 9.9e-01

cell2 8.62e-01 2.367 0.27528 3.12970 1.7e-03

cell3 1.20e+00 3.307 0.30092 3.97474 7.0e-05

cell4 4.01e-01 1.494 0.28269 1.41955 1.6e-01

prior 7.16e-02 1.074 0.23231 0.30817 7.6e-01

Likelihood ratio test=62.1 on 8 df, p=1.8e-10 n= 137

> (VA.coxs <- coxph(Surv(stime, status) ~ treat + age + Karn +

diag.time + strata(cell) + prior, data = VA))

coef exp(coef) se(coef) z p

treat 0.28590 1.331 0.21001 1.361 1.7e-01

age -0.01182 0.988 0.00985 -1.201 2.3e-01

Karn -0.03826 0.962 0.00593 -6.450 1.1e-10

diag.time -0.00344 0.997 0.00907 -0.379 7.0e-01

prior 0.16907 1.184 0.23567 0.717 4.7e-01

Likelihood ratio test=44.3 on 5 df, p=2.04e-08 n= 137

> plot(survfit(VA.coxs), log = T, lty = 1:4, col = 2:5)

> legend(locator(1), c("squamous", "small", "adeno", "large"),

lty = 1:4, col = 2:5)

> plot(survfit(VA.coxs), fun = "cloglog", lty = 1:4, col = 2:5)
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Figure 13.6: Cumulative hazard functions for the cell types in the VA lung cancer trial.
The left-hand plot is labelled by survival probability on log scale. The right-hand plot is
on log-log scale.
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Figure 13.7: Diagnostic plots for the Karnofsky score in the VA lung cancer trial. Left:
log-log cumulative hazard plot for five groups. Right: martingale residuals versus Karnof-
sky score, with a smoothed fit.

> cKarn <- factor(cut(VA$Karn, 5))

> VA.cox1 <- coxph(Surv(stime, status) ~ strata(cKarn) + cell,

data = VA)

> plot(survfit(VA.cox1), fun="cloglog")

> VA.cox2 <- coxph(Surv(stime, status) ~ Karn + strata(cell),

data = VA)

> # R: library(modreg)

> scatter.smooth(VA$Karn, residuals(VA.cox2))

Figures 13.6 and 13.7 show some support for proportional hazards among the
cell types (except perhaps squamous), and suggest a Weibull or even exponential
distribution.

> VA.wei <- survReg(Surv(stime, status) ~ treat + age + Karn +

diag.time + cell + prior, data = VA)
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> summary(VA.wei, cor = F)

....

Value Std. Error z p

(Intercept) 3.262014 0.66253 4.9236 8.50e-07

treat -0.228523 0.18684 -1.2231 2.21e-01

age 0.006099 0.00855 0.7131 4.76e-01

Karn 0.030068 0.00483 6.2281 4.72e-10

diag.time -0.000469 0.00836 -0.0561 9.55e-01

cell2 -0.826185 0.24631 -3.3542 7.96e-04

cell3 -1.132725 0.25760 -4.3973 1.10e-05

cell4 -0.397681 0.25475 -1.5611 1.19e-01

prior -0.043898 0.21228 -0.2068 8.36e-01

Log(scale) -0.074599 0.06631 -1.1250 2.61e-01

Scale= 0.928

Weibull distribution

Loglik(model)= -715.6 Loglik(intercept only)= -748.1

Chisq= 65.08 on 8 degrees of freedom, p= 4.7e-11

> VA.exp <- survReg(Surv(stime, status) ~ Karn + cell,

data = VA, dist = "exponential")

> summary(VA.exp, cor = F)

Value Std. Error z p

(Intercept) 3.4222 0.35463 9.65 4.92e-22

Karn 0.0297 0.00486 6.11 9.97e-10

cell2 -0.7102 0.24061 -2.95 3.16e-03

cell3 -1.0933 0.26863 -4.07 4.70e-05

cell4 -0.3113 0.26635 -1.17 2.43e-01

Scale fixed at 1

Exponential distribution

Loglik(model)= -717 Loglik(intercept only)= -751.2

Chisq= 68.5 on 4 degrees of freedom, p= 4.7e-14

Note thatscale does not differ significantly from one, so an exponential distri-
bution is an appropriate summary.

> cox.zph(VA.coxs)

rho chisq p

treat -0.0607 0.545 0.46024

age 0.1734 4.634 0.03134

Karn 0.2568 9.146 0.00249

diag.time 0.1542 2.891 0.08909

prior -0.1574 3.476 0.06226

GLOBAL NA 13.488 0.01921

> par(mfrow = c(3, 2)); plot(cox.zph(VA.coxs))

Closer investigation does show some suggestion of time-varying coefficients in
the Cox model. The plot is Figure 13.8. Note that some coefficients that are not
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Figure 13.8: Diagnostics plots fromcox.zph of the constancy of the coefficients in the
proportional hazards modelVA.coxs. Each plot is of a component of the Schoenfeld
residual against a non-linear scale of time. A spline smoother is shown, together with±2
standard deviations.

significant in the basic model show evidence of varying with time. This suggests
that the model with justKarn and cell may be too simple, and that we need
to consider interactions. We automate the search of interactions usingstepAIC,
which has methods for bothcoxph andsurvReg fits. With hindsight, we centre
the data.

> VA$Karnc <- VA$Karn - 50

> VA.coxc <- update(VA.cox, ~ . - Karn + Karnc)

> VA.cox2 <- stepAIC(VA.coxc, ~ .^2)

> VA.cox2$anova

Initial Model:

Surv(stime, status) ~ treat + age + diag.time + cell + prior +

Karnc

Final Model:

Surv(stime, status) ~ treat + diag.time + cell + prior + Karnc +

prior:Karnc + diag.time:cell + treat:prior + treat:Karnc

Step Df Deviance Resid. Df Resid. Dev AIC

1 129 948.79 964.79

2 + prior:Karnc 1 9.013 128 939.78 957.78
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3 + diag.time:cell 3 11.272 125 928.51 952.51

4 - age 1 0.415 126 928.92 950.92

5 + treat:prior 1 2.303 125 926.62 950.62

6 + treat:Karnc 1 2.904 124 923.72 949.72

(The ‘deviances’ here are minus twice log partial likelihoods.) Applying
stepAIC to VA.wei leads to the same sequence of steps. As the variables
diag.time and Karn are not factors, this will be easier to interpret using nest-
ing:

> (VA.cox3 <- update(VA.cox2, ~ treat/Karnc + prior*Karnc

+ treat:prior + cell/diag.time))

coef exp(coef) se(coef) z p

treat 0.8065 2.240 0.27081 2.978 2.9e-03

prior 0.9191 2.507 0.31568 2.912 3.6e-03

Karnc -0.0107 0.989 0.00949 -1.129 2.6e-01

cell2 1.7068 5.511 0.37233 4.584 4.6e-06

cell3 1.5633 4.775 0.44205 3.536 4.1e-04

cell4 0.7476 2.112 0.48136 1.553 1.2e-01

Karnc %in% treat -0.0187 0.981 0.01101 -1.695 9.0e-02

prior:Karnc -0.0481 0.953 0.01281 -3.752 1.8e-04

treat:prior -0.7264 0.484 0.41833 -1.736 8.3e-02

cell1diag.time 0.0532 1.055 0.01595 3.333 8.6e-04

cell2diag.time -0.0245 0.976 0.01293 -1.896 5.8e-02

cell3diag.time 0.0161 1.016 0.04137 0.388 7.0e-01

cell4diag.time 0.0150 1.015 0.04033 0.373 7.1e-01

Thus the hazard increases with time since diagnosis in squamous cells, only, and
the effect of the Karnofsky score is only pronounced in the group with prior ther-
apy. We tried replacingdiag.time with a polynomial, with negligible benefit.
Using cox.zph shows a very significant change with time in the coefficients of
the treat*Karn interaction.

> cox.zph(VA.cox3)

rho chisq p

treat 0.18012 6.10371 0.013490

prior 0.07197 0.76091 0.383044

Karnc 0.27220 14.46103 0.000143

cell2 0.09053 1.31766 0.251013

cell3 0.06247 0.54793 0.459164

cell4 0.00528 0.00343 0.953318

Karnc %in% treat -0.20606 7.80427 0.005212

prior:Karnc -0.04017 0.26806 0.604637

treat:prior -0.13061 2.33270 0.126682

cell1diag.time 0.11067 1.62464 0.202446

cell2diag.time -0.01680 0.04414 0.833596

cell3diag.time 0.09713 1.10082 0.294086

cell4diag.time 0.16912 3.16738 0.075123

GLOBAL NA 25.52734 0.019661

> par(mfrow = c(2, 2))

> plot(cox.zph(VA.cox3), var = c(1, 3, 7)) ## not shown
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Stanford heart transplants

This set of data is analysed by Kalbfleisch and Prentice (1980,§5.5.3). (The data
given in Kalbfleisch & Prentice are rounded, but the full data are supplied as data
frameheart.) It is on survival from early heart transplant operations at Stanford.
The new feature is that patients may change treatment during the study, moving
from the control group to the treatment group at transplantation, so some of the
covariates such as waiting time for a transplant are time-dependent (in the simplest
possible way). Patients who received a transplant are treated as two cases, before
and after the operation, so cases in the transplant group are in general both right-
censored and left-truncated. This is handled bySurv by supplying entry and exit
times. For example, patient 4 has the rows

start stop event age year surgery transplant

0.0 36.0 0 -7.73716632 0.49007529 0 0

36.0 39.0 1 -7.73716632 0.49007529 0 1

which show that he waited 36 days for a transplant and then died after 3 days. The
proportional hazards model is fitted from this set of cases, but some summaries
need to take account of the splitting of patients.

The covariates are age (in years minus 48), year (after 1 October 1967) and
an indicator for previous surgery. Rather than use the six models considered by
Kalbfleisch & Prentice, we do our own model selection.

> coxph(Surv(start, stop, event) ~ transplant*

(age + surgery + year), data = heart)

....

Likelihood ratio test=18.9 on 7 df, p=0.00852 n= 172

> coxph(Surv(start, stop, event) ~ transplant*(age + year) +

surgery, data = heart)

....

Likelihood ratio test=18.4 on 6 df, p=0.0053 n= 172

> (stan <- coxph(Surv(start, stop, event) ~ transplant*year +

age + surgery, data = heart))

....

coef exp(coef) se(coef) z p

transplant -0.6213 0.537 0.5311 -1.17 0.240

year -0.2526 0.777 0.1049 -2.41 0.016

age 0.0299 1.030 0.0137 2.18 0.029

surgery -0.6641 0.515 0.3681 -1.80 0.071

transplant:year 0.1974 1.218 0.1395 1.42 0.160

Likelihood ratio test=17.1 on 5 df, p=0.00424 n= 172

> stan1 <- coxph(Surv(start, stop, event) ~ strata(transplant) +

year + year:transplant + age + surgery, heart)

> plot(survfit(stan1), conf.int = T, log = T, lty = c(1, 3),

col = 2:3)

> legend(locator(1), c("before", "after"), lty = c(1, 3),

col = 2:3)
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Figure 13.9: Plots for the Stanford heart transplant study. Left: log survivor curves and
confidence limits for the two groups. Right: martingale residuals against calendar time.

> attach(heart)

> plot(year[transplant==0], residuals(stan1, collapse = id),

xlab = "year", ylab = "martingale residual")

> lines(lowess(year[transplant == 0],

residuals(stan1, collapse = id)))

> sresid <- resid(stan1, type = "dfbeta", collapse = id)

> detach()

> -100 * sresid %*% diag(1/stan1$coef)

This analysis suggests that survival rates over the study improvedprior to trans-
plantation, which Kalbfleisch & Prentice suggest could be due to changes in
recruitment. The diagnostic plots of Figure 13.9 show nothing amiss. The
collapse argument is needed as those patients who received transplants are
treated as two cases, and we need the residual per patient.

Now consider predicting the survival of future patient aged 50 on 1 October
1971 with prior surgery, transplanted after six months.

# Survivor curve for the "average" subject

> summary(survfit(stan))

# follow-up for two years

> stan2 <- data.frame(start = c(0, 183), stop= c(183, 2*365),

event = c(0, 0), year = c(4, 4), age = c(50, 50) - 48,

surgery = c(1, 1), transplant = c(0, 1))

> summary(survfit(stan, stan2, individual = T,

conf.type = "log-log"))

time n.risk n.event survival std.err lower 95% CI upper 95% CI

....

165 43 1 0.654 0.11509 0.384 0.828

186 41 1 0.643 0.11602 0.374 0.820

188 40 1 0.632 0.11697 0.364 0.812

207 39 1 0.621 0.11790 0.353 0.804

219 38 1 0.610 0.11885 0.343 0.796

263 37 1 0.599 0.11978 0.332 0.788
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285 35 2 0.575 0.11524 0.325 0.762

308 33 1 0.564 0.11618 0.314 0.753

334 32 1 0.552 0.11712 0.302 0.744

340 31 1 0.540 0.11799 0.291 0.735

343 29 1 0.527 0.11883 0.279 0.725

584 21 1 0.511 0.12018 0.263 0.713

675 17 1 0.492 0.12171 0.245 0.699

The argumentindividual = T is needed to avoid averaging the two cases
(which are the same individual).

Australian AIDS survival

The data on the survival of AIDS patients within Australia are of unusually high
quality within that field, and jointly with Dr Patty Solomon we have studied sur-
vival up to 1992.6 There are a large number of difficulties in defining survival
from AIDS (acquired immunodeficiency syndrome), in part because as a syn-
drome its diagnosis is not clear-cut and has almost certainly changed with time.
(To avoid any possible confusion, we are studying survival from AIDS and not
the HIV infection which is generally accepted as the cause of AIDS.)

The major covariates available were the reported transmission category, and
the state or territory within Australia. The AIDS epidemic had started in New
South Wales and then spread, so the stateshave different profiles of cases in calen-
dar time. A factor that was expected to be important in survival is the widespread
availability of zidovudine (AZT) to AIDS patients from mid-1987 which has en-
hanced survival, and the use of zidovudine for HIV-infected patients from mid-
1990, which it was thought might delay theonset of AIDS without necessarily
postponing death further.

The transmission categories were:

hs male homosexual or bisexual contact
hsid ashs and also intravenous drug user
id female or heterosexual male intravenous drug user
het heterosexual contact
haem haemophilia or coagulation disorder
blood receipt of blood, blood components or tissue
mother mother with or at risk of HIV infection
other other or unknown

The data file gave data on all patients whose AIDS status was diagnosed prior
to January 1992, with their status then. Since there is a delay in notification of
death, some deaths in late 1991 would not have been reported and we adjusted
the endpoint of the study to 1 July 1991. A total of 2 843 patients were included,
of whom about 1 770 had died by the end date. The file contained an ID number,
the dates of first diagnosis, birth and death (if applicable), as well as the state
and the coded transmission category. We combined the statesACT and NSW (as

6We are grateful to the Australian National Centre in HIV Epidemiology and Clinical Research for
making these data available to us.
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Australian Capital Territory is a small enclave within New South Wales), and
to maintain confidentiality the dates have been jittered and the smallest states
combined. Only the transformed fileAids2 is included in our library.

As there are a number of patients who are diagnosed at (strictly, after) death,
there are a number of zero survivals. The software used to have problems with
these, so all deaths were shifted by 0.9 days to occur after other events the same
day. To transformAids2 to a form suitable for time-dependent-covariateanalysis
we used

time.depend.covar <- function(data) {

id <- row.names(data); n <- length(id)

events <- c(0, 10043, 11139, 12053) # julian days

crit1 <- matrix(events[1:3], n, 3 ,byrow = T)

crit2 <- matrix(events[2:4], n, 3, byrow = T)

diag <- matrix(data$diag,n,3); death <- matrix(data$death,n,3)

incid <- (diag < crit2) & (death >= crit1); incid <- t(incid)

indr <- col(incid)[incid]; indc <- row(incid)[incid]

ind <- cbind(indr, indc); idno <- id[indr]

state <- data$state[indr]; T.categ <- data$T.categ[indr]

age <- data$age[indr]; sex <- data$sex[indr]

late <- indc - 1

start <- t(pmax(crit1 - diag, 0))[incid]

stop <- t(pmin(crit2, death + 0.9) - diag)[incid]

status <- matrix(as.numeric(data$status),n,3)-1 # 0/1

status[death > crit2] <- 0; status <- status[ind]

levels(state) <- c("NSW", "Other", "QLD", "VIC")

levels(T.categ) <- c("hs", "hsid", "id", "het", "haem",

"blood", "mother", "other")

levels(sex) <- c("F", "M")

data.frame(idno, zid=factor(late), start, stop, status,

state, T.categ, age, sex)

}

Aids3 <- time.depend.covar(Aids2)

The factorzid indicates whether the patient islikely to have received zidovudine
at all, and if so whether it might have been administered during HIV infection.

Our analysis was based on a proportional hazards model that allowed a pro-
portional change in hazard from 1 July 1987 to 30 June 1990 and another from 1
July 1990; the results show a halving of hazard from 1 July 1987 but a nonsignif-
icant change in 1990.

> attach(Aids3)

> aids.cox <- coxph(Surv(start, stop, status)

~ zid + state + T.categ + sex + age, data = Aids3)

> summary(aids.cox)

coef exp(coef) se(coef) z p

zid1 -0.69087 0.501 0.06578 -10.5034 0.0e+00

zid2 -0.78274 0.457 0.07550 -10.3675 0.0e+00

stateOther -0.07246 0.930 0.08964 -0.8083 4.2e-01
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Figure 13.10: Survival of AIDS patients in Australia by state.

stateQLD 0.18315 1.201 0.08752 2.0927 3.6e-02

stateVIC 0.00464 1.005 0.06134 0.0756 9.4e-01

T.categhsid -0.09937 0.905 0.15208 -0.6534 5.1e-01

T.categid -0.37979 0.684 0.24613 -1.5431 1.2e-01

T.categhet -0.66592 0.514 0.26457 -2.5170 1.2e-02

T.categhaem 0.38113 1.464 0.18827 2.0243 4.3e-02

T.categblood 0.16856 1.184 0.13763 1.2248 2.2e-01

T.categmother 0.44448 1.560 0.58901 0.7546 4.5e-01

T.categother 0.13156 1.141 0.16380 0.8032 4.2e-01

sex 0.02421 1.025 0.17557 0.1379 8.9e-01

age 0.01374 1.014 0.00249 5.5060 3.7e-08

....

Likelihood ratio test= 185 on 14 df, p=0

The effect ofsex is nonsignificant, and so dropped in further analyses. There is
no detected difference in survival during 1990.

Note that Queensland has a significantly elevated hazard relative to New South
Wales (which has over 60% of the cases), and that the intravenous drug users
have a longer survival, whereas those infected via blood or blood products have a
shorter survival, relative to the first category who form 87% of the cases. We can
use stratified Cox models to examine these effects (Figures 13.10 and 13.11).

> aids1.cox <- coxph(Surv(start, stop, status)

~ zid + strata(state) + T.categ + age, data = Aids3)

> (aids1.surv <- survfit(aids1.cox))

n events mean se(mean) median 0.95LCL 0.95UCL

state=NSW 1780 1116 639 17.6 481 450 509

state=Other 249 142 658 42.2 525 453 618

state=QLD 226 149 519 33.5 439 360 568

state=VIC 588 355 610 26.3 508 476 574

> plot(aids1.surv, mark.time = F, lty = 1:4, col = 2:5,

xscale = 365.25/12, xlab = "months since diagnosis")
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Figure 13.11: Survival of AIDS patients in Australia by transmission category.

> legend(locator(1), levels(state), lty = 1:4, col = 2:5)

> aids2.cox <- coxph(Surv(start, stop, status)

~ zid + state + strata(T.categ) + age, data = Aids3)

> (aids2.surv <- survfit(aids2.cox))

n events mean se(mean) median 0.95LCL 0.95UCL

T.categ=hs 2465 1533 633 15.6 492 473.9 515

T.categ=hsid 72 45 723 86.7 493 396.9 716

T.categ=id 48 19 653 54.3 568 447.9 NA

T.categ=het 40 17 775 57.3 897 842.9 NA

T.categ=haem 46 29 431 53.9 337 252.9 657

T.categ=blood 94 76 583 86.1 358 267.9 507

T.categ=mother 7 3 395 92.6 655 15.9 NA

T.categ=other 70 40 421 40.7 369 300.9 712

> par(mfrow = c(1, 2))

> plot(aids2.surv[1:4], mark.time = F, lty = 1:4, col = 2:5,

xscale = 365.25/12, xlab = "months since diagnosis")

> legend(locator(1), levels(T.categ)[1:4], lty = 1:4, col = 2:5)

> plot(aids2.surv[c(1, 5, 6, 8)], mark.time = F, lty = 1:4,

col = 2:5, xscale = 365.25/12, xlab = "months since diagnosis")

> legend(locator(1), levels(T.categ)[c(1, 5, 6, 8)],

lty = 1:4, col = 2:5)

We now consider the possible non-linear dependence of log-hazard onage.
First we consider the martingale residual plot.

cases <- diff(c(0,idno)) != 0

aids.res <- residuals(aids.cox, collapse = idno)

scatter.smooth(age[cases], aids.res, xlab = "age",

ylab = "martingale residual")

This shows a slight rise in residual with age over 60, but no obvious effect. The
next step is to augment a linear term in age by a step function, with breaks chosen
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from prior experience. We set the base level to be the 31–40 age group by using
relevel , which re-orders the factor levels.

age2 <- cut(age, c(-1, 15, 30, 40, 50, 60, 100))

c.age <- factor(as.numeric(age2), labels = c("0-15", "16-30",

"31-40", "41-50", "51-60", "61+"))

table(c.age)

0-15 16-30 31-40 41-50 51-60 61+

39 1022 1583 987 269 85

c.age <- relevel(c.age, "31-40")

summary(coxph(Surv(start, stop, status) ~ zid + state

+ T.categ + age + c.age, data = Aids3))

....

coef exp(coef) se(coef) z p

....

age 0.009218 1.009 0.00818 1.1266 0.2600

c.age0-15 0.499093 1.647 0.36411 1.3707 0.1700

c.age16-30 -0.019631 0.981 0.09592 -0.2047 0.8400

c.age41-50 -0.004818 0.995 0.09714 -0.0496 0.9600

c.age51-60 0.198136 1.219 0.18199 1.0887 0.2800

c.age61+ 0.413690 1.512 0.30821 1.3422 0.1800

....

Likelihood ratio test= 193 on 18 df, p=0

....

detach()

which is not a significant improvement in fit. Beyond this we could fit a smooth
function of age via splines, but to save computational time we deferred this to
the parametric analysis, which we now consider. From the survivor curves the
obvious model is the Weibull. Since this is both a proportional hazards model and
an accelerated-life model, we can include the effect of the introduction of zidovu-
dine by assuming a doubling of survival after July 1987. With ‘time’ computed
on this basis we find

make.aidsp <- function(){

cutoff <- 10043

btime <- pmin(cutoff, Aids2$death) - pmin(cutoff, Aids2$diag)

atime <- pmax(cutoff, Aids2$death) - pmax(cutoff, Aids2$diag)

survtime <- btime + 0.5*atime

status <- as.numeric(Aids2$status)

data.frame(survtime, status = status - 1, state = Aids2$state,

T.categ = Aids2$T.categ, age = Aids2$age, sex = Aids2$sex)

}

Aidsp <- make.aidsp()

aids.wei <- survReg(Surv(survtime + 0.9, status) ~ state

+ T.categ + sex + age, data = Aidsp)

summary(aids.wei, cor = F)

....

Coefficients:
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Figure 13.12: Predicted survival versus age of aNSW hs patient (solid line), with point-
wise 95% confidence intervals (dashed lines) and a rug of all observed ages.

Value Std. Error z p

(Intercept) 6.41825 0.2098 30.5970 1.34e-205

stateOther 0.09387 0.0931 1.0079 3.13e-01

stateQLD -0.18213 0.0913 -1.9956 4.60e-02

stateVIC -0.00750 0.0637 -0.1177 9.06e-01

T.categhsid 0.09363 0.1582 0.5918 5.54e-01

T.categid 0.40132 0.2552 1.5727 1.16e-01

T.categhet 0.67689 0.2744 2.4667 1.36e-02

T.categhaem -0.34090 0.1956 -1.7429 8.14e-02

T.categblood -0.17336 0.1429 -1.2131 2.25e-01

T.categmother -0.40186 0.6123 -0.6563 5.12e-01

T.categother -0.11279 0.1696 -0.6649 5.06e-01

sex -0.00426 0.1827 -0.0233 9.81e-01

age -0.01374 0.0026 -5.2862 1.25e-07

Log(scale) 0.03969 0.0193 2.0572 3.97e-02

Scale= 1.04

Note that we continue to avoid zero survival. This shows good agreement with
the parameters for the Cox model. The parameterα (the reciprocal of the scale)
is close to one. For practical purposes the exponential is a good fit, and the pa-
rameters are little changed.

We also considered parametric non-linear functions ofage by using a spline
function. We use the P-splines of Eilers and Marx (1996) as this is implemented
in both survReg and coxph; it can be seen as a convenient approximation to
smoothing splines. For useful confidence intervals we include the constant term
in the predictions, which are for aNSW hs patient. Note that for valid prediction
with pspline the range of the new data must exactly match that of the old data.

> survReg(Surv(survtime + 0.9, status) ~ state + T.categ

+ age, data = Aidsp)

....

Scale= 1.0405
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Loglik(model)= -12111 Loglik(intercept only)= -12140

> (aids.ps <- survReg(Surv(survtime + 0.9, status) ~ state

+ T.categ + pspline(age, df=6), data = Aidsp))

....

coef se(coef) se2 Chisq DF

(Intercept) 4.83189 0.82449 0.60594 34.34 1.00

....

pspline(age, df = 6), lin -0.01362 0.00251 0.00251 29.45 1.00

pspline(age, df = 6), non 9.82 5.04

p

....

pspline(age, df = 6), lin 5.8e-08

pspline(age, df = 6), non 8.3e-02

....

> zz <- predict(aids.ps, data.frame(

state = factor(rep("NSW", 83), levels = levels(Aidsp$state)),

T.categ = factor(rep("hs", 83), levels = levels(Aidsp$T.categ)),

age = 0:82), se = T, type = "linear")

> plot(0:82, exp(zz$fit)/365.25, type = "l", ylim = c(0, 2),

xlab = "age", ylab = "expected lifetime (years)")

> lines(0:82, exp(zz$fit+1.96*zz$se.fit)/365.25, lty = 3, col = 2)

> lines(0:82, exp(zz$fit-1.96*zz$se.fit)/365.25, lty = 3, col = 2)

> rug(Aidsp$age + runif(length(Aidsp$age), -0.5, 0.5),

ticksize = 0.015)

The results (Figure 13.12) suggest that a non-linear in age term is not worthwhile,
although there are too few young people to be sure. We predict log-time to get
confidence intervals on that scale.


